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LIST OF SYMBOLS

Airy function

Depth of a point source

Exnressior defined In Equation (7.1)
Acceleration of gravity

Depth of keel of submarine

= U*/g

Modified Bessel Punctions of 2nd kind

Integrals defined in Equation (19) and (20),
respectively

Strength of point source
Strength of iline source per unit iength
= % R
o
Coefficients of assymptotic expansion defined in
Bquation (AS)
= (1 - 8 taa® 3)

Redial distance frow singularity defined in
Equation (2)

Relative veloeity of water gt Infinity

Rectangular ri~n. hep  .:oordinates, x in the
direction of U and z vsrticaliy upward

x coovrdinate of singularity

Angle defired in Eguaticn (2}
Critical angle of & defined in Equation (8.1)

Constant defined in Equatica (8)
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n
1(5), v(6)

W e ieTR o M e ama i S

~lv-
Flctitious frictionul force
Coefficlents of transformation defined in
Equation (A4)
Velocity potential
Exp-ession defined in Equation (2)
Wave height due to a point source
Regular wave and local disturbance due to a
point source respec”*ively
Wave height due to 2 source line
Regular wave and local dicivurbance fue “n a
source line respectively
Transverse and aivergent waves, 1c¢spectively.
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INTRODUCTION

The pattern and the height cof surface waves duc to a sur-
face ship or a submerged body has been considered by miny hydro-
dynamists since Lord Kelvin (1691) worked out the wave system
due to a pressure point on the surface. This problem is attrac-
tive not only because of practical applications in connection
with the wave resistance or stabllity of ships but also as a
basic physical phenomencn and because of the delicate application

of mathematics involved.

Kelvin calculated the intz2gial repreaenting the wave height
by the method of stationary phase whict is reasunably valid far
behind the pressure point inside the critical angle (*190 261).
Hevelock (1906) evaluated the wave height on “he crlticai line .
Hogn=r (1923} investigated the wave height due to a Kelvin scurce
in the vieinity of tic critical line. Peters (i3%19) and Ursell
(1960) improved the theory and the result using the method of
steepest descent.

Havelock investigated the wave due to a sutmerged sphere
(1926) [see also Wigley (1930)], and the infinite draft ship
(1932). Yinnaka also investigated waves of the infinite draft
ahip and performed the numerical evai.. "ion (1957).

In this paper, the wave Lizghti ¢ to2 a submergs? point
source and a source line is investigeted. The wrve hzight con-
sists of two parts; the regular wave and the local disturbance.
The meth.d of evaluating the integral representing regular waves
is different in two regions, that in the vicinity and that far
behind the sipgularity. 1In the viecinity of the singularity, the
numberical i: tegration is performed by tihe metnod of Gauss'
quadrature, At the far place, the method of stationary phnse

Oy 2 b

s 83wy R -

B P R T

e ra b M e R R b

v




HYDRONAUT™CS, Incorporated

-2-

is used, jne behavior of the wave height near the critlecal

line 18 discussed.

For the local disturbance, the integral can be evaluated

in the closed form immediately above the singularity. A scheme

involving numericsl computation by high speed machine 18 worked
out for other points.

As an example, the wave height due to a simple form of sub-
marine with given dimensions is caiculated in detail. The in-
fuence of the submrrine sail 1s included.

WAVE h<iGH1 DUE TO A SIMPLE SONIRCE

As usual, the water is assumed tc be inviscid, homogeneous
and incompressible. Hence there exists a potential ¢, The
coordinate system 1s fixed in the singularity and only the steauy
probiem i3 considered., The origin of the right handsd coordinate
system O-xyz is located on the mean free surface; x is directed
along the uniform relative velocity ot tae water, and z 1Is verti-
cally upmard. The surface wave is assumed to be small compared
with the wave length, and the principle of superposition holds,

Tne derivation of the formulz of the wave height { due to
a point source located at (xl,o,-f), with the strength M is well
known (e.g. see Wigley 1949).

T ™
U M 12 kok sec @ ek(jw"f)

L =-9_= - =—Re dkde (1)
B X eny J =X sec’0 - iu sec 8
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where
®=(x-x )cos 6 +ysin 8
. 1
=Rcos (6 - 6), with x ~x =Rcos b, y =R sin & (2)
1
k°=-55,5=arctan(x—L-) (3)

U - x

i is the fietitious frictional force which is to be put
zaro after the evalua“ion of the integral. By cor - .ntegration
(see Appendix 1) ¢ becomes the sum of two integrals,

L =L+, (%) |

n/2
=4 X . 2 3 2
Cr i T Ke J exp ( kot‘ sec? 0)sec® 6 cos (kou) sec® 9)de

‘1/2 + 0 (5)

F¥/2 4+ 6 o

;:-2" | exp (-mw) m sec 6
£ U . ) 2 4
J s ¥ sec* ¢ o
-x/2+86 ¢ 7

X (i, sec® 0 sin (mf) - m cos (mf)) dmd3

oM f f exp(m—cose)msece
-f. t'zseca-o-m2

(k f sec®6 sin m
o o
-'/2 [¢]

- m cos m} dmdé (6)

%
3
3
3
3
b
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%
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where 90 =6 + 6, cr is called the regular wave and Cz is
the local disturbance which diminishes with lurge .

This is the fundamental formula for the surface wave since
the body in the water is usualiy represented by source distri-
buticns. The wave height due to a given body is then obtalned
by cuperposition of all the waves produced by each source. The
wave due to higher order singularities such as a doublet 1s the
derivative of Equation (4) with respect to the position in the
direction of the higher order singulari=y.

The evaluaticns of Cr and cz in Equations ‘. .1 (6) are
not simple. These will be discussed separat=]ly in the following
two sections.

EVALUATION OF THE REGULAR WAVE

The evaluation of the integral {  of Equaticn (5) 1s dif-
ferent in the two regions, near and far behind the singularity.

(A) Stationary Phase. On the surface far behind the
singularity, 1.e. when kOR is isrge,the method cof stationary
phase can be applied to the integral (5). This method was
originated by Lord Kelvin (1887) and can be found discussed in
any related text (e.g. Lamb 1945, p. 395).

Let ua consider the inteeral

x/2

I ~4 M koj exp (-kof sec? 0)sec® o coa(tif(e)) do (7)

r
-x/2

where F(6) - sec® 6 cos (6 - 6), N = k B - (7.1)

L i o ol g W S Mo e o iy
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Since N is large,the part of integration betweer -7/ and

-ms2 + 0 is negiigibie.

The root of the derivative of F(6) with respect to € is

obtained as

P'(8) = ©

or

2tan® 9+ ten b6 tan 5+ 1 =0

; =-%[cot63~ V(cot? 5 - 8))
tanaaf

which is only significant when cot®> 6 - 56 2 O or 6 < tan *

Now {7) can be evaluated as the sum of :wo waves, [
Cr " divergent,

G = Gt * b

. u s Y - 2. <
{ , =48 = sec™@ ecApi(-n [ 3ec*s } ,——y5—
rt o U 1 o a VN!F (9 )'
1

rt

(8)

IH

2
T

n
n

o

.1)
transverse ,

4
\

cos (N F(@ )t%
8

|

(9)

- !- 3 ) 2 __2'__ t I
L. = Bk, g Bec 82 exp( i f sec 62)\/ = Icos (N F(?z) T )
N[F (o)
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-ha
where F' (6) = (6 tan? 6 + i) sec® A cos (5-9)
+ 4 sec® 0 tan 6 sin (6-0) (10)
and the sign of * 7/4 i3 decided as the sign of F"(6).

However, this is only for § < 5, . When b = C, which means the
centerline, 91 =0, 8 =-1/2,
2

and F' (9 ) = 1
1
(9) = -w
2
Hence
¢ =r =uk M - 2r T -
Cp = Cpp = Mk T &XP ( kof) N °os (N + ) (11)
Since N = koR = Eg » the wave length on the center-
U
line is
2r U3 /g (11.1)

When 6 = Gc which 1s the critical line, 6 =6 ,
1 2

F"(6 ) = 0 and this makes Ejuation {S; .ingular. When & > 5,
1

the right hand side of EBquation (8) becomes imaginary. 1In the
vicinity of this critical 1line far behind the singularity, Hogner
(1923), Peters (1949), and Ursell (1960) investigated thoroughly
the situation for the wave due to a pressure point.
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-T=-

Putting tan 6 = u in Equation (5) and neglecting the interval
(-m/2, -m/2 + 6), we cbtain ‘

= 8k %} exp(—kof) fl]l + u®) exp (=k £ u?) x

C =
1
o
X cos (kb N (3 + u?))cos (koy ud (1 + u®)ldu
o
= .M. - { 1 2 - 2
= 4ko G eXp ( kof)Réj (1 +u®) .xp ( k fu Y X
00
X exp [i1N ((cos 86-u sin 68N (1 +u?)} ldu (12)
where kox = N cos & koy = N sin &.

We note that the expression for the wave height due to the
pressure point on the surface is exactly the same as that due
to the submerged doublet with the corresponding strength and zero
depth (compare Equation(2.2) of Ursell (1960) with Havelock's
{1928) Equation (12) at far behind the singularity by the change
of variable as above) . We mentioned . "ready the relation be-
tween the wave heights due to a auull . and a point source.

The method of Chester, Friedman, and Ursell {1957) can be
adopted for the asymptotic expansion o the above equation in
the viecinity of the critical line as in Ursell's paper {1960).
The idea is that in order to use the method of steepest descent
in the vicinity of the critical line(where the usual methcd of

steepest descent fails) the integral is represented in g series

W R (Dt R L T

4
3
k-4
2
2
g
2
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of Airy functions (see Jeffreys and Jeffreys, 1946 8§ 17.07) by
the regular transformatlion of the variablc of iabtégsrz. ion. Chescer
et al (1957) worked out the rigorous theory. The only difference
between the twc cases of the pressure point (by Ursell (1960))

and the submerged point source is in the form of the analytic
function g(z) in the integral

J 8(u) ero [Nf(u)] (12a)

(of Chester et al, Equation (1.1)).

The way of deviving the asymptotic expansion u: Equation (12)
in the vicinity of the criticzl angle is exact) r the same as
Ursell's (1960). His coefficient of transformation u(6) and v(5)
are exactly the same for each angle, which are tabulated in his
paper. The coefficients of the asymptotic expansion of P, and q,

are different. These are derived in Appendix 2 keeping the close
connection with Ursell's paper (1960). The result is:

2
Iy

2 X k £ P |
5) = cos8 & n{s6) [exp(- o £26(1+Q 23(1+Q #(1- §Q)
Po(®) g; sin? B (1-8 tan®s el 367 cote 1yl ed)

k f ,
+ expl- —= cot?6 (1-@)7j(s-a) . + lQ)E ] (13)
PXPL- 18 (l=@) s(o-ad) - 3

ok b, ST e e

WYl Yt R g
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; -
& cos B w(6) \& Kof 26(1-Q)2) (1+Q)% ( )
5 [- t26(1-Q 1+Q)* (1~ -Q
%o (6 = y% sin® © (1-3 tanaa) e *
k f %
- exp|- 6 cot?s (1-Q)2) (1~ Q) (1 + —Q) ] (14)

where Q = (1-8 tan®s).

Thus we obtain the asymptotic expansion of the wave height

taking the real part of the integral (12) (instead of innaginary
B

part as in Ursell's /1960) Equation (3.6))

C 4k ﬂ-ex (6)
~ p(-k ) —— é_ A, (- Nsu(b)) cos (Nv(5)
N

q,(€)

A; (-ﬁsﬁ(ﬁ)) sin(Nv(58)) (15)

which is valid in some t'inite angle including 6 = bc by the

theory proved by Chester et al. (1957). The terms neglected in

the assymwotic series (15) are of order N ) A, and ¥ -2 A" at

most. (See Appendix 2)

As was pointed out previously, the difference betwuen the
wave height due to a pressure point and a doublet is only in the
depth effect., Hence, for the case of a submerged doublet, p_

~

and q, (in Ursell's tabie) should only be multiplied by cor-
responding exponential factor, exp[—kof (1 + u:)] and

2
n

19 gy ¥, ot

© bt A e
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C
2065 o

exp [-kof (2 + u® )} respectively. Since u =u_-

the line § = 60, the same factor exp [-kof (1 + 2%2—9 )}applied to

P, and a, would be sufficient in the very close vicinity of the

critical line. N.mely the wave pattern will be tne same in the
close vicinity of the eritical line except that the wave helght
is reduced relative to that of the pressure point. However,
the wave height due to a submergea point source, Equation (15)
is different not only in P, and q, but &lso the sine and cosine

are oxchanged from that of the pressure point (Urmelt= (4,12)).

(B) In the Vicinity of the Singularity-

Equation (5) can be written as

/2
= M 3 —ic 2 2
gl = hko T sec®8 exp ( k T sec 0) cos (kow sec®0)de
2z/2 + B

/2
= ! 3 ‘_ 2 2
= bk UJ[ sec®@ exp (-k f sec 6) cos (k w sec 6)de
-r/2
/2
- : ! 3 - 2 : can?
bk U;[. sec®0 exp(-k I sec e)cos[koR cos(6 + b6)sec®9)ad
m/2-5

(16)
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e For‘tQEmfirst integral on the right hand side of the above

i equution, g ﬁ;é?ul tabie is avallanle from the idmir:isy n--
search lLaborastory (1955). This is derived from the numerical
evaluaticn ¢f the related integral by the method of Wilson (1957).
The geeond term 1s negligible when x - x1 is large, but in the

near fleld this term may be important. If a high speed calcu-
laving machine is used, ¢ for reasonably small R/f can be read-
1ly evaluated by the uselof Gauss'!' mechanical quadrature formula.

If we change the variable 6 by tan € = u as in Equation (12),
Eyuation (16) becomes

g = bk M exp(-kof)]-f(l + uz)exp(-kot‘uz)cos[kox {1+ u?)IX

-0
X cos(k_yu V(1 + u?)! du

- bk M exp(-k ) [ ¥(1 + ua)exp(—kof'uz) X

x/v

X cos[k R cos(arc tan u : 6)(1 + u®)] du (17)

with x1 = 0 for convenience,

The first integral of the right hand gide can be evaluated by the
Hermite-Gauss quadrature formula for which the weights (Christofel
numbers) and the zeros of the Hermite polynomials calculated by

e i v

i TAL
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Kopal are available up to the crder 20. Por the ge~crd integral,
if x is small, the 1imit of the integral may better be changed to

[0

When x/y is sufficiently large by vhe change of variable

t = u®

the second integral of the right hand side of Fquation (17) will
become

M i x2 r
2 57 exp [~k £(1 + ;z)ljf(l + t)exp(~t;t) X
o

-1
. . at
x cos [k R cos(tan Nt + 6)(1 + t)] T+ (18)
t X2
where t = —& 4 2. |
kf ¥y

This can be evaluated by Laguerre-Gaugs qusdrature for which the
welghts and the zeros of the Laguerre polynomiais cbceained by
Zalzer and Zucker (1949) are available up to the order 15.

Of course, by using a high speed machine such as the 1M
7090, the other method of direct integration of (17) even vith
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Simpson's rule is applicable to the extent that the «-zillation
is rapid and the ampiltude 1s small enough to be negiected. But
the speed of calculation also highly depends or the magnitude of
R/f. The advantag:- of the method of Gauss' guadrature lies in
its simplicity and ¢a {lme saving, but the error is extremely
difficult to estimate.

EVALUATION OF THE ._OCAL DISTURBANCE

The evataation of the integrai (6) representing the local
ulgldarvance is also extremely complicated. Tuore F~- teen no
ana ytical form of the result. Even the numerizal method is not
easy, especially in the vicinity directly above the singularity,
because of the slow convergence of the integral. Numerical
evaluation of equation (6) was cbtained for a certain range of
parameters by w1gley(1949). The evaluation can be treated
separately in two reglions -~ in the viecinity of the singularity
and away from 1t.

(A) In the Vicinity of the Singularity

At the point immedlately above the singularity the
integral can be evaluated analytically in closed form. The
expression (6), involves a type of 1r* -gral

(1) ~® an _~mp
L (pg.8) =] w e " cosmg 4 (19)
_L 32 + nm?

and

(2) = -]
_ 2n + 1 _-mp
L (p,q,8) = m e~ sinmg . (20)
[o]

n
s? + m?

ata St A S e A h vy w4 e

boad v
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HYDRONAUTICS, Incorporated

“14a

for p>0, n>0
p20, n=20

which raduce to the well kno.n Laplace integrals (See Erdelyi
1953) when p=n - O

~

(2)

_ I ..qs
L, (0,9,8) = 5 e (21)

Portinacely a part of the integral (6), .s ~xactly in this form
Wi}

when R = 0 or w = C, The other part 1s of the furm L1 (0,9,8)

which is the divergent integral. However this can be evaluated

as the limit of R—+ 0, which can not orly be derived formally

but also can be Justified rigorously without difficulty.

(1) ® 2 _~mp
L (o,q,8) = 1im f. LN €8 1 4,
t P04 82 + o

re mp
-um 2 Be _sinM g,
p= 0 q} g2 4+ 2

78 -qs (22)

l

From Equations (19) - (22),

~% mk sec®8 sin (mf) - . .

/ dm = = k sec” 6 exp (—kof sec” @)
4
2

ko2 sec * 90 + m?
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Vad
2 -~
J4m / exp(-mR cos 6)m?sec 6 cos(mf) dm = - gkosecae £\0(~ka gec?6)
R=07 koz see* 9 + m?

Hence from (6)

T

”~

7 exp(-mR cos 8)m zec 9,

0]
% 1im X
R—0 K2 see* 6 + m®
-1 ° o
2

e
tw
)}
EVTIN

x (i sec? o, sin(mf) - m cos (mf)j dmdd

/2
= -2k = sec®(6 + o)expl-k f sec2(6 + 6)] 40
/2

where 60 =6 + 6, but if 6 = O,

t, = -k, % exp(-k £/2) (K (k £/2) + K (K £/2)]  (23)

where Ko’ K are modified Bessel funct' =g of the 2nd kind.
1

(See, e.g. Lunde 1952, page 33).

It 1s easy to see that cz is antisvmmetric with respect to
the y axis. Hierxce,cz =0onXx =0or b =1r/2. Besldes, Cz has
a discontinuity in appearance on the line y = 0. Physically
this is impossible. However, 1t is obvious in equation (€) tha

Ak, w0 ad K Pl Wl ey Ge bhe = 8
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Cg is a continuous function of b even when R -» O, taking the
value betweer {, (R— 0, 6 = 0) and g, (R=0, 6 =) -

-Cl (R—=+ 0, 6 = 0). This means that, even on R-+ O, the water
surface is continuous although the derivative 1s not sc except
in the direction & = m/2. Of course,we have to remember that

we neglected tne viscosity and the surface tension.

When R is very small but not equal to zero, there is no
easy method to intcgrate, even numerically. However, it may be
worth while mentioning Barakat's work (19°1) on integrating
L functions and the ure of it here.

Using the notations (19) and (20), Equation (6) can bte

written,
/2
2_M;_ 3 (2)R 2
;z = - 50 [kof sec eo Lo {F cos 6.1,kof sec 90]
r/2
(1) , . .
-sec 6 L (3 cos 6,1, k,f sec 60}, do (24)

where 60 =6 + b.

Barakat changed the L functior wnich hr an oscillating integrand

into other non-oscillating integrals plus known functiors, 1.e.
,as . g2

(1) (ps) -qsf e” (ps) Q°{ eV

e ] ————— gt - e f} —_— dt

L (p,a,s) = &= :
° 24 (ps)?t? 28§ (ps)24t?

1 . . =QqT
+ 2 (¢, (ps) sin(ps) + {g - 8,(rs)} cos(pe)] e 9

(25)
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(23 .qs qs
2) - t ; e-'G
L, (p'q:8>=“§lequl gt lgp) e
J (ms) 4t Y
+ (¢, (ps) sin(ps) + (§ - S, (ps)) cos(ps)le™®® (26)

where ci and Si are cosine and sine inteerals respectively, and

(1) (1)
L (p,q,8) = - 8% Ly + —F (27)

(See Barakat (1961) Equations (27), (28) and (29)).

If' we use Equations {24) - (27), the integrand of Equation (24)
can be evaluated at certain points. Then the usual method of
integration can be used with respect to 6.

B. When R/f 1s not too small - the integral (() converges
reasonably well., We may then use a combination of quadrature
methods, Equation (6) can Le written,

R a3 38 R S48 RGN 9 M ¢ RO LSl R Vs i

PR T
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exp [-fm + (2n + 1w} %-cos 8l'm + (2n + L)w}? .

- —_— T d. |sec € sin m dmdo
kozfz sec* 6, + ((en + 1)wr + m j2 J

1

(28)
- - X
where m; =m+ > -

Because of the expcnential term, the integrand diminishes rapidiy
wher : increases. We may either use @Gat s' or Simpson's quad-
rature formulas betwecen -%-and %- for botn integra.s. Especially
when %»cos 6 is reasonably large, say >.5, we ray directly apply

the Laguerre-Gauss quadrature for.rtla to the integral with re-

spect to m of Equation (6), and then “he Legendre-Gauss or Simpsn—'e

quadrature formula to the integral wiuh respect to 9.

In Pigure 1, the value of (6) is plotted for each Froude
number with respect to the depth versus the distance, x/y, where
the curves for Froude numbers 1 and .707 are plotted using the

table by Wigley for the sake of comparison.

WAVE DUE TO A SUBMERGED SCURCE LINE

The wave helght { due to a submc. “ed finite source line can
be obtained by 1ntegrazing eyuativus ), (5) and (6) with re-
spect to the depth f from the top f to the bottom £ . The
method ¢ evaluating the integrals 1;volved are exactiy gimilar
to the case of a point source. If we non-dimensionalize the
physical quantities by the depth f of the top of infinite 3ub-
merged source line, the result canlbe used fcr the case of a

finite source line by matching the corresponding perameters.

s ANl B bl 8 S et b o e

B I T DT FRESEHN T TR ey

-

£ WA o cant

PR




T
‘YaJuaT aTun Jad SUTT 80anos ayyg Jo YaBuaals a8yl £ W I3JISUM

£/x
r

J
) o
Toiwzinzwiﬂ ue30ae) 800 ¥ H)800, ( n+r)( 0 J x..vmkw\\ (3 % Ixag-
t

T

2

o0

4
p o o . o o IT
{(+T) p 0 £7)800[( n+T) p X A [s00 ...mnoﬁmz+azmz 3 A-)dxa((J xn.waxm_.l.wu” = 9
J
8\
T It

*o0UBQINISTP TEOOT 8yl © 3 puB aABM JBINIoa oy3z ST 2 2JI9YM

AL JIT, T

2+ 2= 2

99 TJaM 9M
IONI.

paieaodaosul ‘SOILAVNOHAXH




t3=d
ToEuE so0 om LTI
1
“ J=3
T
X I (T +ug)e + w) & %6 4095 w,umx
hd T -
A. (#{t + ug) + wj[g =or m. {((t + w2y + w}-] dxe
'
T (o} [s) - ‘l-
2(LU2 + W) + T9 098 g K W “ \k ,Mc T
+ h 4 ! -~— -
(tug + w) [g so0 WTEN + w)-]dxs i - p~ \ W2
g/u e/u
mr T T o
1 o 1 2(T+ug)r+u)+ 9,005 3
opupl utgs @ o938 I Y | 3 v
L (o soo = {(2(T + ug) + w}-] dxs
Y . . |
{
T o g/u-  2/u-
9 ,088 J, A =u b.:.._
J h 9 . =
[6 500 & (wuz + w)-] dxa | | 3 We |
g/L 2/
2
J=3 T o o 2/u-
epu r . - =
L {Ju urs w + Jw S02 @ Nomwmoxv ¢ oas{g s00 yuw-)dxs Sx_ - We
T 2/u

3=3

pojeaodaodouIl ‘SOILNYNOMAAH




HYDRONAUTICS, Incorporated

~22-
wheree—e+5m_m+_[
o SR 2
At R~ 0
/2
2ML
cxg : 5 sec 6_(exp( kot sec®6 ) exp( k,f_ sec 6,)}de
-T/2

where 60 =8 + 5. When 6 = 0 and R~ O.

2M

&, =T L exp (k£ /2)k (k£ /2)

- exp (-kofl/e) KO (kofl/a)]

Figures 2 and 3 show the local disturbance for the submerged
infinite source line for the different distances x/f versus
1

Froude number with respect to f , and for the different Froude
1

numbers versus x/T' respectively.

WAVES DUE TO A SUBMARINE

If we represent the submarine hul® by a Rankine ovoid and

the sail of the submarine by a cuiwd® .10m of a source line and a
3ink line, the wave height due to the submarine can bLe obtained
by the methods described above. In Figure 4, the dimensions of
the submarine to be used as an examplc areshown, FPFigure 5 shows
the corresponding positions and strengths of a point source and
a point sink for the hull, and a source linc aud a sink line for
the sail. These are obtained using the theory of Rankine's
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solids (see e.g. Milne-Thomson page 441) for the hull, and the
two dimensional theory (see Milne-Thomson page 203) for the sail,
which is approximately valid. All figures related tc¢ the sub-
marine are shown with dimensional quantities. Figure 6a shows
the amplitude of the regular wave immediately benind and 5 wave
lengths behind the st~ rr “or several depths. Since the wave
length is 27 va/g as shown in Equation (11.1), the interactions
between the sources and the sinks of the hull and sail cause
the wiggling of the curve, The effect of speed on the wave
height is so great that 5 cycle semi-log oaper is used to plot
the gmplitudes.

Figure 6b shows the comparison of the amplitudes due to hull
and sail at a distance 5 wave lengths behind the stern. We can
see that the saill waves are dominant up to a speed of ahout 11 knots
for each depth, while the hull waves become gradually dominant wi.h
increasing speed above 11 knots.

In Figures 7-11 the wave heights near the submarine are
plotted for several angles from the bow of the sail or the bow
of the hull, The two Figures 7 and § of these five figures are
transformed to contour dlagrams in Figures 12 and 13. As was
shown in Equation (15), for large N, the wave in the vicinity of
the critical line decays like N’é while the wave in 6 < 6c de-
cays like N-% where N = k R, 1In the vl inity of the submarine,
it 1= noticeable that the transverse wave is first promizent and
gradually the divergent wave becomes more prominent when the
distance increases,

In Figures 14 - 17 the local disturbance ci1 the centerline
due to the sail 1s plotted. The local disturbance due to a

Wrlbenal o) wWaNR APt

point source or a line source is antisymmetric with respect to

ORI,
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the axis perpendicular to the velo~ity through thc Lo jection
of the singularity on the mean free surface, as shown before.
The local disturbance due to a sink i8 exactly opposite in sign.
Therefore, the local disturbance due to the sail or the hull is
exactly symmetric with respect to the midsail or the midship
plane. Figure 18 shows the local disturbances in different
directions.

In Flgures 19 - 22 the local disturbance due to the hull
is plotted for different depths and diff: :ent speeds.
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To evaluate

i 12k k sec 6 explk (1w-f)]

-6 = %ﬁ i dkde
g k - k, sec® 6-1u sec 6
-Tr o
w= (x - xi) cos 6 + y sin @
=R cos (6 - b)
- 4
6 = arc tan (x-t )
1
Note the only singularity at k = ko + iy sec 6,
where sec 8 > O for - g-< 8 < g
sec € ¢ 0 for g <8gm -T<OL - g
when w> 0 or - % + 86 <8 < %-+ 6 , we take the contour
ABO instead of OA in Figure Al. When @< 0, or Z+6< 6 < ™
and - T< 6 < - g + 6, we take the eco- ~r ACO instead of OA.
Then the singularity in the case - %-( 0 < - % + & and

% £ 8 <L % + & 1z outside the contour. 'Thus we obtain:
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APPENDIX 2

To apply the method of steepest descent to Equation (12),
first Debye's curves through two saddle points are glven by

Peters (134G) in his Figures 5, 6 and 7. These are the roots of

%g (u,6)= %; [(cos 8 -~ usin 8)d (L +u®)] =0 (A1)

Namely, the points

6+\G) = Tlf [cot 6 + ¥ (cot?® & - 6);
and

5_(56) =

=i

By the method of Chester et al. (1957), the integral can be

expressed in terms of the Airy functicn (see Jeffreys and
Jeffreys 1946 8 17.07).

e exp(% i)

- 1o
A:(Z)‘zwij exp ($t° - 2t)dt
w exp(- % i)
= % | cos (% t® + 2t) dt (a3)
J
[

where Z 1s real, we transform the variable u by

F (u,8) =(ccs 6-u sin 6) V(1 + u?) = - % v 4 (o) (6)

(ak)

(cot & - ¥(cot® & - 8)] (A2)
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which is proved to be a regular one-to-one transformation if the

zeros of Equation (1) , w and the zeros of

2F (u,b du .
—_gu_.l N=-vau(e) =0 (A5)

or
v -ty? (A6)

correspond. Urseil (1960) calculated u(6) and v(6) for each

6 near 6;’ which can be used here without any change. Now the
analytic function g(v) g% in Equation (12a) ¢: ¢!~  :vesponding
expression in Equation (12}

exp(-kofuz)(l + uz)% du/dv (A7)

is expanded in the form

Soa(6)(# - w(e))™ + 9T a (65} - w(e)"  (48)
I_‘ o
o

which holds uniformly when v and 6 ~ 60 are sufficiently small.
Coefficients pm's and qm's can be found by repeatedly differenti-
ating both sides and putting u = uy and v =1 u?, fThen the

Y

asymptotic expansion of the irisgmal - is shown to be

E py(8) F{v* - u(6))" expliN(- 2 @ 4 uv-v)] av

+ 3 qm(a) jv(vz-u(ﬁ))m exp(iN{- = V® + uv-v)ldv

W=

(A9)
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where the integration can be extended with a negligibie error
from ~ « exp (%i) to » exp (- %1) {cf Peters Figure (). T
obtain the dominant term it is sutticient to calculate the
leading coefficients po(a) and qo(a). Putting u = uy (6),
v=1% u.% (6) in Equation (19), we obtain

du
exp(-k £ v24) (1 + w2 ) (@), - p (8) t ud(e) a(5)  (A20)
where (g%)i can be obtained as follows:

62F (g_\l)z p_l{ dzu

sz 9V u 2 =-2v
whence (QEE) (99-)2 - F° u%
5u2 t dv/r ~
If we put Q=J(1 - 8 tan® q), from (A2)
ug = 22 (11 Q)
and 1+ 2, = fg cot®s (1t Q) (1 3 —;— Q) (A11)
827 4 -+ -1 -3
From (AL) (==), =% sin 0 Q(1 T Q) < (1 *+ 3 @)
5u2 * ;¥ 3
oy 35wt Lt
Hence &), = i; ;ﬁ}-‘; CEatef1iz0 (r12)
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where Q = ¥ (1-8 tan®s).
Putting these P, and a, into Equation (A9) we obcair. irn2 ti.sst

two terms of the asymptotic expansions of the integral (12)

2 £
27 1 exp{-iNv(6)) [iN°® po(é) Aj(-N u(6))
% 2
+ N3 g (6) &' (-N° u(5))]

-

Then the assymptotic expaneion of cl i8 obtalned taking the
real oa::

P, (6) %
1;1 = bk M exp(-kof) ?3— Ai(-N n(6)) cos(rvs(6 )

6
- %0 Ai'(-»i§ w(s)) sin(Nv(G))J (A16)

N &

which is valid in some finite angle including & = 66.

Since (A9) can be rearranged in the form

Ay! (Néu) a, (u) At (N§ W) b (w)
2 + 3 -S4
. Tk N N

+

z + o
N’s N" B okl

A u) e ) AR b )
: »

(See Chester et al., (1957).
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where the fiist two terms come from the first summation related to
Py of expression {A9) and the other two from the ::<. relatfed

to q, in (A9). Hence the terms neglected in (Al6) by taking

only m = 0 are of order N‘g A1 and N’i A1 at most.

i
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FIGURE 18 - LOCAL DISTURBANCE DUE TO SAIL ALONE
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